0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Development an Artificial Neural Network Model for Estimating Cost of R/C Building by Using Life-Cycle Cost Function: Case Study of Mexico City

Autor(en):
ORCID

ORCID

ORCID
ORCID

ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2022
Seite(n): 1-15
DOI: 10.1155/2022/7418230
Abstrakt:

This paper addresses the importance of engineering asset management decisions and control. For this purpose, a Life-Cycle Cost (LCC) analysis is conducted for typical reinforced concrete (R/C) buildings located in Mexico City. The objective of this study is to develop an artificial neural network (ANN) model that can estimate the total expected cost of R/C buildings by using LCC functions. The total cost includes the initial cost and the cost of the damage caused by future possible ground motions at the site of interest. The present value of the cost includes: initial cost, repair or reconstruction cost, cost of damage to the contents, costs associated with the loss of life or injuries and economic losses. The structural performance is evaluated using probabilistic models, artificial neural networks models are used to obtain the seismic response of the buildings. The methodology is applied to a set of reinforced concrete buildings with 4, 8, and 12 stories which are located at the soft soil of Mexico City. Finally, it is concluded that the life-cycle cost is efficiently obtained using artificial neural network models for estimating the structural reliability of reinforced concrete buildings, in such a way that it can be used as an excellent planning tool that covers long spans of time.

Copyright: © Henry E. Reyes et al. et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

Geografische Orte

  • Über diese
    Datenseite
  • Reference-ID
    10663854
  • Veröffentlicht am:
    09.05.2022
  • Geändert am:
    01.06.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine