Developing a Conceptual Partner Selection Framework: Digital Green Innovation Management of Prefabricated Construction Enterprises for Sustainable Urban Development
Autor(en): |
Shi Yin
Tong Dong Baizhou Li Shuo Gao |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 7 Juni 2022, n. 6, v. 12 |
Seite(n): | 721 |
DOI: | 10.3390/buildings12060721 |
Abstrakt: |
Digital green innovation management activities are the core of low-carbon intelligent development of prefabricated construction enterprises (PCEs) for sustainable urban development. PCEs have to seek joint venture partners to avoid the financial risk of digital green innovation projects. The purpose of this study is to develop a conceptual partner selection framework for the digital green innovation management of prefabricated construction towards urban building 5.0. In this study, first, symbiosis theory and six analysis methods were integrated to innovatively build a 3W1H-P framework system for the joint venture capital partner selection of digital green innovation projects. Second, the dual combination weighting method was innovatively proposed to avoid subjective and objective deviation in attribute weight and time weight. Finally, empirical research was carried out to verify the scientific nature, reliability, and practicability of the framework system and selection model. The results of this study show that the framework system and selection model proposed can be used to assist PCEs to select joint investment partners of digital green and innovative projects for sustainable urban development. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.84 MB
- Über diese
Datenseite - Reference-ID
10679603 - Veröffentlicht am:
17.06.2022 - Geändert am:
10.11.2022