0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Detection of sand deposition in pipeline using percussion, voice recognition, and support vector machine

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 6, v. 19
Seite(n): 2075-2090
DOI: 10.1177/1475921720918890
Abstrakt:

Deposits prevention and removal in pipeline has great importance to ensure pipeline operation. Selecting a suitable removal time based on the composition and mass of the deposits not only reduces cost but also improves efficiency. In this article, we develop a new non-destructive approach using the percussion method and voice recognition with support vector machine to detect the sandy deposits in the steel pipeline. Particularly, as the mass of sandy deposits in the pipeline changes, the impact-induced sound signals will be different. A commonly used voice recognition feature, Mel-Frequency Cepstrum Coefficients, which represent the result of a cosine transform of the real logarithm of the short_term energy spectrum on a Mel-frequency scale, is adopted in this research and Mel-Frequency Cepstrum Coefficients are extracted from the obtained sound signals. A support vector machine model was employed to identify the sandy deposits with different mass values by classifying energy summation and Mel-Frequency Cepstrum Coefficients. In addition, the classification accuracies of energy summation and Mel-Frequency Cepstrum Coefficients are compared. The experimental results demonstrated that Mel-Frequency Cepstrum Coefficients perform better in pipeline deposits detection and have great potential in acoustic recognition for structural health monitoring. In addition, the proposed Mel-Frequency Cepstrum Coefficients–based pipeline deposits monitoring model can estimate the deposits in the pipeline with high accuracy. Moreover, compared with current non-destructive deposits detection approaches, the percussion method is easy to implement. With the rapid development of artificial intelligence and acoustic recognition, the proposed method can realize higher accuracy and higher speed in the detection of pipeline deposits, and has great application potential in the future. In addition, the proposed percussion method can enable robotic-based inspection for large-scale implementation.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921720918890.
  • Über diese
    Datenseite
  • Reference-ID
    10562413
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine