0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Design hygrothermally functional wooden insulation systems: A parametric study for mixed climate

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Building Physics, , n. 4, v. 46
Seite(n): 474-509
DOI: 10.1177/17442591221142506
Abstrakt:

According to existing measurements and simulation results, the indoor thermal comfort in traditional wooden buildings (still remaining in a large amount) in the Chinese Hot-Summer-Cold-Winter zone is very poor in winter. However, few studies can be found regarding the energy retrofitting of their wooden enclosures, which is increasingly regarded as essential for improving indoor thermal comfort and maintaining built heritage. Therefore, this study demonstrates a method based on parametric study applying the widely validated WUFI®Plus software to help design hygrothermally functional insulation systems for this area. The parametric study was conducted on the example of traditional exterior wooden walls in Tongren in southern China. Five parameters were investigated, including internal and external insulation systems, vapor-open (mineral wool) and vapor-tight (XPS) insulation materials, a U-value of 0.8 W/(m²K) as well as a lower U-value of 0.24 W/(m²K) for the insulated walls, different capabilities and positions of an additional vapor control layer, as well as different cooling/dehumidification conditions in the warm period of a year. It has been found in this study that, if possible, a lower U-value than the current Chinese design standard for energy efficiency of buildings (0.8 W/(m²K) should be preferred for energy retrofitting. This can limit the yearly duration of a high internal surface relative humidity over 80% shorter than 30 days without any dehumidification devices. Besides, this study provides some feasible wall configurations with instructions on their limitations to guide future work regarding the design of insulated building components and the operation of renovated traditional wooden buildings.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/17442591221142506.
  • Über diese
    Datenseite
  • Reference-ID
    10714243
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    21.03.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine