0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Design and performance evaluation of electromechanical impedance instrumented quantitative corrosion measuring probe based on conical rods

Autor(en): ORCID




ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 12, v. 31
Seite(n): 124001
DOI: 10.1088/1361-665x/ac9baa
Abstrakt:

Previous study has proved that using electromechanical impedance instrumented bar-type corrosion measuring probe can realize the quantitative assessment of the corrosion amount. To gain more insights into the working mechanism and design better probes, this work examined a new type of corrosion measuring probe based on the conical rod, and evaluated their performance. Theoretical model of this type of new probes was established based on one dimensional piezo-elasticity theory, and the electrical impedance was derived to obtain first resonant and anti-resonant frequencies in longitudinal vibration mode. Two experiments were performed to validate the feasibility of the probe for corrosion measurement, including the artificial uniform corrosion experiment and the accelerated corrosion test. Comparisons between the theoretical predictions and the experimental results from the artificial uniform corrosion experiment were made, and good agreement was found. Effects of piezoelectric patch thickness and cone angle on first resonant and anti-resonant frequencies were also analyzed. In addition, a wireless impedance measurement system was preliminarily realized, which is very promising in developing the low cost and high accuracy online real-time monitoring technology for the pipeline corrosion monitoring.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ac9baa.
  • Über diese
    Datenseite
  • Reference-ID
    10695369
  • Veröffentlicht am:
    10.12.2022
  • Geändert am:
    10.12.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine