0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep Learning for Inversion of Tipper Data of a Certain Railway Tunnel in Tibet Area

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2651
Seite(n): 012090
DOI: 10.1088/1742-6596/2651/1/012090
Abstrakt:

The traditional inversion methods for tipper rely excessively on the selection of the initial model, whose global search capability is poor. Inspired by the significant approximation advantage of deep learning for nonlinear inverse problems with big data, we design a deep learning architecture called TipInv-net for the inversion of tipper. TipInv-net takes the improved U-net as the basic framework to obtain the tipper response characteristics of the abnormal body, and then, dense skip connection is applied among the nested standard convolution modules to alleviate the gradient disappearance problem and enhance feature propagation. It’s worth noting that we construct a feature pyramid of tipper response via average pooling to obtain multi-scale receptive fields, which, thus enhancing global and detail location of abnormal body. The theoretical model test indicates that the position and attitude of geological anomaly body can be distinguished via TipInv-net, even in the presence of a certain level of noise, the inversion accuracy will not be greatly affected. TipInv-net has strong generalization. Besides, after the training process of the network, we can obtain the inversion result immediately. In order to verify the effectiveness of the method in this paper, the inversion of the field tipper data of a section of a certain railway tunnel in Tibet area is carried out.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2651/1/012090.
  • Über diese
    Datenseite
  • Reference-ID
    10777531
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine