0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep learning for enhancing wavefield image quality in fast non-contact inspections

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 4, v. 19
Seite(n): 1003-1016
DOI: 10.1177/1475921719873112
Abstrakt:

Ultrasonic wavefield imaging with a non-contact technology can provide detailed information about the health status of an inspected structure. However, high spatial resolution, often necessary for accurate damage quantification, typically demands a long scanning time. In this work, we investigate a novel methodology to acquire high-resolution wavefields with a reduced number of measurement points to minimize the acquisition time. Such methodology is based on the combination of compressive sensing and convolutional neural networks to recover high spatial frequency information from low-resolution images. A data set was built from 652 wavefield images acquired with a laser Doppler vibrometer describing guided ultrasonic wave propagation in eight different structures, with and without various simulated defects. Out of those 652 images, 326 cases without defect and 326 cases with defect were used as a training database for the convolutional neural network. In addition, 273 wavefield images were used as a testing database to validate the proposed methodology. For quantitative evaluation, two image quality metrics were calculated and compared to those achieved with different recovery methods or by training the convolutional neural network with non-wavefield images data set. The results demonstrate the capability of the technique for enhancing image resolution and quality, as well as similarity to the wavefield acquired on the full high-resolution grid of scan points, while reducing the number of measurement points down to 10% of the number of scan points for a full grid.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921719873112.
  • Über diese
    Datenseite
  • Reference-ID
    10562337
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine