0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep-Learning-Based Drive-by Damage Detection System for Railway Bridges

Autor(en): ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Infrastructures, , n. 6, v. 7
Seite(n): 84
DOI: 10.3390/infrastructures7060084
Abstrakt:

With the ever-increasing number of well-aged bridges carrying traffic loads beyond their intended design capacity, there is an urgency to find reliable and efficient means of monitoring structural safety and integrity. Among different attempts, vibration-based indirect damage identification systems have shown great promise in providing real-time information on the state of bridge damage. The fundamental principle in an indirect vibration-based damage identification system is to extract bridge damage signatures from on-board measurements, which also embody vibration signatures from the vehicle and road/rail profile and can be contaminated due to varying environmental and operational conditions. This study presents a numerical feasibility study of a novel data-driven damage detection system using train-borne signals while passing over a bridge with the speed of traffic. For this purpose, a deep Convolutional Neural Network is optimised, trained and tested to detect damage using a simulated acceleration response on a nominal RC4 power car passing over a 15 m simply supported reinforced concrete railway bridge. A 2D train–track interaction model is used to simulate train-borne acceleration signals. Bayesian Optimisation is used to optimise the architecture of the deep learning algorithm. The damage detection algorithm was tested on 18 damage scenarios (different severity levels and locations) and has shown great accuracy in detecting damage under varying speeds, rail irregularities and noise, hence provides promise in transforming the future of railway bridge damage identification systems.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10722860
  • Veröffentlicht am:
    22.04.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine