0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deep learning–based autonomous concrete crack evaluation through hybrid image scanning

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 5-6, v. 18
Seite(n): 1722-1737
DOI: 10.1177/1475921718821719
Abstrakt:

This article proposes a deep learning–based autonomous concrete crack detection technique using hybrid images. The hybrid images combining vision and infrared thermography images are able to improve crack detectability while minimizing false alarms. In particular, large-scale concrete-made infrastructures such as bridge and dam can be effectively inspected by spatially scanning the unmanned vehicle–mounted hybrid imaging system including a vision camera, an infrared camera, and a continuous-wave line laser. However, the expert-dependent decision-making for crack identification which has been widely used in industrial fields is often cumbersome, time-consuming, and unreliable. As a target concrete structure gets larger, automated decision-making becomes more desirable from the practical point of view. The proposed technique is able to achieve automated crack identification and visualization by transfer learning of a well-trained deep convolutional neural network, that is, GoogLeNet, while retaining the advantages of the hybrid images. The proposed technique is experimentally validated using a lab-scale concrete specimen with cracks of various sizes. The test results reveal that macro- and microcracks are automatically visualized while minimizing false alarms.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921718821719.
  • Über diese
    Datenseite
  • Reference-ID
    10562253
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine