Data Fusion for Smart Civil Infrastructure Management: A Conceptual Digital Twin Framework
Autor(en): |
Obaidullah Hakimi
Hexu Liu Osama Abudayyeh Azim Houshyar Manea Almatared Ali Alhawiti |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 26 Oktober 2023, n. 11, v. 13 |
Seite(n): | 2725 |
DOI: | 10.3390/buildings13112725 |
Abstrakt: |
Effective civil infrastructure management necessitates the utilization of timely data across the entire asset lifecycle for condition assessment and predictive maintenance. A notable gap in current predictive maintenance practices is the reliance on single-source data instead of heterogeneous data, decreasing data accuracy, reliability, adaptability, and further effectiveness of engineering decision-making. Data fusion is thus demanded to transform low-dimensional decisions from individual sensors into high-dimensional ones for decision optimization. In this context, digital twin (DT) technology is set to revolutionize the civil infrastructure industry by facilitating real-time data processing and informed decision-making. However, data-driven smart civil infrastructure management using DT is not yet achieved, especially in terms of data fusion. This paper aims to establish a conceptual framework for harnessing DT technology with data fusion to ensure the efficiency of civil infrastructures throughout their lifecycle. To achieve this objective, a systematic review of 105 papers was conducted to thematically analyze data fusion approaches and DT frameworks for civil infrastructure management, including their applications, core DT technologies, and challenges. Several gaps are identified, such as the difficulty in data integration due to data heterogeneity, seamless interoperability, difficulties associated with data quality, maintaining the semantic features of big data, technological limitations, and complexities with algorithm selection. Given these challenges, this research proposed a framework emphasizing multilayer data fusion, the integration of open building information modeling (openBIM) and geographic information system (GIS) for immersive visualization and stakeholder engagement, and the adoption of extended industry foundation classes (IFC) for data integration throughout the asset lifecycle. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
8.5 MB
- Über diese
Datenseite - Reference-ID
10753809 - Veröffentlicht am:
14.01.2024 - Geändert am:
07.02.2024