0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Data-driven time-variant reliability assessment of bridge girders based on deep learning

Autor(en): ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
ORCID (School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, China)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Mechanics of Advanced Materials and Structures
Seite(n): 1-13
DOI: 10.1080/15376494.2023.2253548
Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1080/15376494.2023.2253548.
  • Über diese
    Datenseite
  • Reference-ID
    10776773
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine