0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Data-Driven Decision Support for Equipment Selection and Maintenance Issues for Buildings

Autor(en): ORCID
ORCID

ORCID
ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 2, v. 14
Seite(n): 436
DOI: 10.3390/buildings14020436
Abstrakt:

Equipment costs play a critical role in decision making during design and construction, which requires up-to-date information and data. The design of this study incorporates the inputs from the literature review on the influencing factors of equipment costs and major targeted equipment types to enhance decision support for equipment selection, project construction, and maintenance issues. Two traditional cost estimation methods and five machine-learning methods were compared in this study to identify significant attributes related to the predictions of the costs and residual values of each targeted equipment type. The novelty of this study is that the developed method improves prediction accuracy by establishing a comprehensive and well-structured database framework. A comparison of this method with the existing prediction models reveals that the results and the accuracy of multiple regression analysis are improved in the range of (3% to 33.97%) with the use of a modified decision-tree model combined with support vector machines. The major contribution of this research is the design, implementation, and validation of a machine-learning-based modified decision tree with a support vector machine model for improved accuracy and decision support in construction management. Future research should consider the relationship between geographical variations and value changes.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10760155
  • Veröffentlicht am:
    15.03.2024
  • Geändert am:
    25.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine