0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 1, v. 18
Seite(n): 334-344
DOI: 10.1177/1475921718755572
Abstrakt:

Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg grating sensors along a straight line and axially in parallel to each other. The Lamb wave imaging is then performed by phased array algorithms without weighting factors (conventional delay-and-sum) and with adaptive weighting factors (minimum variance). The properties of both imaging algorithms, as well as the effects of fiber Bragg grating’s direction-dependent sensor factor, are characterized, analyzed, and compared in details. The results show that this compact fiber Bragg grating array can precisely locate damage in plates, while the comparisons show that the minimum variance method has a better imaging resolution than that of the delay-and-sum method and is barely affected by fiber Bragg grating’s direction-dependent sensor factor. Laboratory tests are also performed with a four–fiber Bragg grating array to detect simulated defects at different directions. Both delay-and-sum and minimum variance methods can successfully locate defects at different positions, and their results are consistent with analytical predictions.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921718755572.
  • Über diese
    Datenseite
  • Reference-ID
    10562142
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine