0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Damage Detection in Structural Health Monitoring using Hybrid Convolution Neural Network and Recurrent Neural Network

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Frattura ed Integrità Strutturale, , n. 59, v. 16
Seite(n): 461-470
DOI: 10.3221/igf-esis.59.30
Abstrakt:

The process of damage identification in Structural Health Monitoring (SHM) gives us a lot of practical information about the current status of the inspected structure. The target of the process is to detect damage status by processing data collected from sensors, followed by identifying the difference between the damaged and the undamaged states. Different machine learning techniques have been applied to attempt to extract features or knowledge from vibration data, however, they need to learn prior knowledge about the factors affecting the structure. In this paper, a novel method of structural damage detection is proposed using convolution neural network and recurrent neural network. A convolution neural network is used to extract deep features while recurrent neural network is trained to learn the long-term historical dependency in time series data. This method with combining two types of features increases discrimination ability when compares with it to deep features only. Finally, the neural network is applied to categorize the time series into two states - undamaged and damaged. The accuracy of the proposed method was tested on a benchmark dataset of Z24-bridge (Switzerland). The result shows that the hybrid method provides a high level of accuracy in damage identification of the tested structure.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3221/igf-esis.59.30.
  • Über diese
    Datenseite
  • Reference-ID
    10648796
  • Veröffentlicht am:
    07.01.2022
  • Geändert am:
    07.01.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine