Customized AutoML: An Automated Machine Learning System for Predicting Severity of Construction Accidents
Autor(en): |
Vedat Toğan
Fatemeh Mostofi Yunus Emre Ayözen Onur Behzat Tokdemir |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 27 Oktober 2022, n. 11, v. 12 |
Seite(n): | 1933 |
DOI: | 10.3390/buildings12111933 |
Abstrakt: |
Construction companies are under pressure to enhance their site safety condition, being constantly challenged by rapid technological advancements, growing public concern, and fierce competition. To enhance construction site safety, literature investigated Machine Learning (ML) approaches as risk assessment (RA) tools. However, their deployment requires knowledge for selecting, training, testing, and employing the most appropriate ML predictor. While different ML approaches are recommended by literature, their practicality at construction sites is constrained by the availability, knowledge, and experience of data scientists familiar with the construction sector. This study develops an automated ML system that automatically trains and evaluates different ML to select the most accurate ML-based construction accident severity predictors for the use of construction professionals with limited data science knowledge. A real-life accident dataset is evaluated through automated ML approaches: Auto-Sklearn, AutoKeras, and customized AutoML. The investigated AutoML approaches offer higher scalability, accuracy, and result-oriented severity insight due to their simple input requirements and automated procedures. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.04 MB
- Über diese
Datenseite - Reference-ID
10699832 - Veröffentlicht am:
10.12.2022 - Geändert am:
10.05.2023