Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks
Autor(en): |
Jianjian Zhu
Zhongqing Su Qingqing Wang yinghong yu Jinshan Wen Zhibin Han |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Smart Materials and Structures, 19 Oktober 2023, n. 11, v. 32 |
Seite(n): | 115017 |
DOI: | 10.1088/1361-665x/acfcf8 |
Abstrakt: |
Continuous and accurate monitoring of the degree of curing (DoC) is essential for ensuring the structural integrity of fabricated composites during service. Although machine learning (ML) has shown effectiveness in DoC monitoring, its generalization and extendibility are limited when applied to other curing-related scenarios not included in the previous learning process. To break through this bottleneck, we propose a novel DoC monitoring approach that utilizes transfer learning (TL)-boosted convolutional neural networks alongside Gramian angular field-based imaging processing. The effectiveness of the proposed approach is validated through experiments on metal/polymeric composite co-bonded structures and carbon fiber reinforced polymers using raw sensor data separately collected through the electromechanical impedance and fiber Bragg grating (FBG) measurements. Four indicators, accuracy, precision, recall, and F1-score are introduced to evaluate the performance of generalization and extendibility of the proposed approach. The indicator scores of the proposed approach exceed 0.9900 and outperform other conventional ML algorithms on the FBG dataset of the target domain, demonstrating the effectiveness of the proposed approach in reusing the pre-trained base model on the composite curing monitoring issues. |
Copyright: | © 2023 Jianjian Zhu, Zhongqing Su, Qingqing Wang, Yinghong Yu, Jinshan Wen, Zhibin Han |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.86 MB
- Über diese
Datenseite - Reference-ID
10742626 - Veröffentlicht am:
28.10.2023 - Geändert am:
07.02.2024