0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Crack45K: Integration of Vision Transformer with Tubularity Flow Field (TuFF) and Sliding-Window Approach for Crack-Segmentation in Pavement Structures

Autor(en): ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 1, v. 13
Seite(n): 55
DOI: 10.3390/buildings13010055
Abstrakt:

Recently, deep-learning (DL)-based crack-detection systems have proven to be the method of choice for image processing-based inspection systems. However, human-like generalization remains challenging, owing to a wide variety of factors such as crack type and size. Additionally, because of their localized receptive fields, CNNs have a high false-detection rate and perform poorly when attempting to capture the relevant areas of an image. This study aims to propose a vision-transformer-based crack-detection framework that treats image data as a succession of small patches, to retrieve global contextual information (GCI) through self-attention (SA) methods, and which addresses the CNNs’ problem of inductive biases, including the locally constrained receptive-fields and translation-invariance. The vision-transformer (ViT) classifier was tested to enhance crack classification, localization, and segmentation performance by blending with a sliding-window and tubularity-flow-field (TuFF) algorithm. Firstly, the ViT framework was trained on a custom dataset consisting of 45K images with 224 × 224 pixels resolution, and achieved accuracy, precision, recall, and F1 scores of 0.960, 0.971, 0.950, and 0.960, respectively. Secondly, the trained ViT was integrated with the sliding-window (SW) approach, to obtain a crack-localization map from large images. The SW-based ViT classifier was then merged with the TuFF algorithm, to acquire efficient crack-mapping by suppressing the unwanted regions in the last step. The robustness and adaptability of the proposed integrated-architecture were tested on new data acquired under different conditions and which were not utilized during the training and validation of the model. The proposed ViT-architecture performance was evaluated and compared with that of various state-of-the-art (SOTA) deep-learning approaches. The experimental results show that ViT equipped with a sliding-window and the TuFF algorithm can enhance real-world crack classification, localization, and segmentation performance.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10712383
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine