0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

The Crack Generation Algorithm of Underwater Bridge Based on Improved Generative Adversarial Network

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2694
Seite(n): 012071
DOI: 10.1088/1742-6596/2694/1/012071
Abstrakt:

To address the challenge of obtaining underwater bridge crack images for bridge defect detection, this paper proposes an enhanced CycleGAN algorithm based on a generative adversarial network. Within the encoder-decoder architecture, two key enhancements have been introduced. First, to prevent the loss of information at different scales during training, residual connections with 1x1 convolutional kernels have been added. Second, to prioritize useful feature information during model training, the CBAM attention mechanism has been incorporated. Experimental results demonstrate that the improved model significantly enhances performance, with a 29% increase in the FID index, as well as a 9% improvement in PSNR and a 7% improvement in SSIM.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2694/1/012071.
  • Über diese
    Datenseite
  • Reference-ID
    10777498
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine