0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Crack Detectability and Durability of Coaxial Cable Sensors in Reinforced Concrete Bridge Applications

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Transportation Research Record: Journal of the Transportation Research Board, , n. 1, v. 2172
Seite(n): 151-156
DOI: 10.3141/2172-17
Abstrakt:

The working mechanism and the measurement principle of topology-based crack sensors made of coaxial cables are briefly reviewed. The sensitivity, spatial resolution, and ruggedness of two coaxial cable sensors, respectively made of rubber and Teflon dielectric materials, were compared and validated with laboratory testing of a 4/5-scale, T-shaped, reinforced concrete beam-column specimen. Two Teflon sensors were installed on one of the solid decks of a three-span continuous highway bridge to investigate their durability and measurement repeatability. Laboratory tests indicated that both types of sensors have high sensitivity, but the Teflon sensor has a higher spatial resolution and a negligible spillover effect of any significant cracks. At a 90-degree bend, however, the Teflon sensor is more susceptible than the rubber sensor to the rubbing action of the outer conductor of a coaxial cable against its dielectric layer. No cracks were observed during the field load tests of the instrumented bridge. Both sensors indicated high durability in real-world application but a certain variation of waveforms was measured over a period of 5 years because of the use of different instruments. Future research is directed to develop an online calibration of crack sensors with a small portion of built-in standard cable at the end of the cable sensor.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3141/2172-17.
  • Über diese
    Datenseite
  • Reference-ID
    10778143
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine