0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Coupling Beams’ Shear Capacity Prediction by Hybrid Support Vector Regression and Particle Swarm Optimization

Autor(en):
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 2, v. 15
Seite(n): 191
DOI: 10.3390/buildings15020191
Abstrakt:

In structures with reinforced concrete walls, coupling beams join individual walls to produce a rigid assembly that withstands sideways forces. A precise forecasting of the critical shear capacity is essential to avoid early shear failure and attain the desired ductility performance of coupled shear wall systems in earthquake design. This paper examines the ability of Support Vector Regression (SVR) in predicting the shear performance of coupling beams. SVR is a distinguished machine learning regression method that has been positively utilized in former works to forecast the performance of several structural members. Nevertheless, the capability of this regression method deeply relies on picking its best hyperparameters. To handle this, a heuristic optimization procedure named Particle Swarm Optimization (PSO) was merged with SVR to select the optimal hyperparameters. The data of RC coupling beams collected from the previous works were utilized to build the proposed model. Several performance metrics, including RMSE, R2, and MAE, were employed to compare the performance of the optimized model against a baseline SVR model and previous approaches. Analytical results indicate that the new optimized prediction model can assist civil engineers in designing RC coupling beam structures more effectively and outperforms existing models in predicting the shear strength of such beams.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10816086
  • Veröffentlicht am:
    03.02.2025
  • Geändert am:
    03.02.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine