0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

The Cost-Optimal Control of Building Air Conditioner Loads Based on Machine Learning: A Case Study of an Office Building in Nanjing

Autor(en): ORCID






Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 10, v. 14
Seite(n): 3040
DOI: 10.3390/buildings14103040
Abstrakt:

Building envelopes and indoor environments exhibit thermal inertia, forming a virtual energy storage system in conjunction with the building air conditioner (AC) system. This system represents a current demand response resource for building electricity use. Thus, this study centers on the CatBoost algorithm within machine learning (ML) technology, utilizing the LASSO regression model for feature selection and applying the Optuna framework for hyperparameter optimization (HPO) to develop a cost-optimal control method for minimizing building AC loads. This method addresses the challenges associated with traditional load forecasting and control methods, which are often impacted by environmental temperature, building parameters, and user behavior uncertainties. These methods struggle to accurately capture the complex dynamics and nonlinear relationships of AC operations, making it difficult to devise AC operation and virtual energy storage scheduling strategies effectively. The proposed method was applied and validated using a case study of an office building in Nanjing, China. The prediction results showed coefficient of variation in root mean square error (CV-RMSE) values of 6.4% and 2.2%. Compared with the original operating conditions, the indoor temperature remained within a comfortable range, the AC load was reduced by 5.25%, and the operating energy costs were reduced by 24.94%. These results demonstrate that the proposed method offers improved computational efficiency, enhanced model performance, and economic benefits.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3390/buildings14103040.
  • Über diese
    Datenseite
  • Reference-ID
    10804534
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine