0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Convolutional Neural Network with Attention Module for Identification of Tunnel Seepage

Autor(en):








Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Transportation Research Record: Journal of the Transportation Research Board, , n. 11, v. 2676
Seite(n): 112-123
DOI: 10.1177/03611981221091774
Abstrakt:

As tunnel construction proceeds ever more rapidly, the efficiency of seepage detection by engineers with expert knowledge is facing unprecedented challenges. Moreover, it suffers from strong subjectivity. In recent years, deep learning, as an algorithm of machine learning, has achieved state-of-the-art performance in pattern recognition. In this paper, we address such a problem by building convolutional neural networks that operate on conventional graphics processing units. Within the project, the data is obtained by an infrared thermal imager since there exist different characteristics of temperature between the area of seepage and non-seepage. Considering the difficulty of collecting many images, generative adversarial nets and other data augmentation skills are applicable to enlarge data sets. We design several novel architectures where the attention mechanism is plugged into various traditional models, considered as VGG16 network with Attention Module and RestNet34 with Attention Module, and the overall identification accuracy achieved is more than 97%. The codes of this project can be found at https://github.com/Scotter-Qian/cnn .

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/03611981221091774.
  • Über diese
    Datenseite
  • Reference-ID
    10777878
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine