Construction Work-Stage-Based Rule Compliance Monitoring Framework Using Computer Vision (CV) Technology
Autor(en): |
Numan Khan
Syed Farhan Alam Zaidi Jaehun Yang Chansik Park Doyeop Lee |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 2 August 2023, n. 8, v. 13 |
Seite(n): | 2093 |
DOI: | 10.3390/buildings13082093 |
Abstrakt: |
Noncompliance with safety rules is a major cause of unsatisfactory performance in construction safety worldwide. Although some research efforts have focused on using computer vision (CV) methods for safety rule inspection, these methods are still in their early stages and cannot be effectively applied on construction job sites. Therefore, it is necessary to present a feasible prototype and conduct a detailed analysis of safety rules to ensure compliance at the job site. This study aims to extend the validation of safety rule analysis through four case scenarios. The proposed structured classification of safety rules includes categorizing them based on project phases and work stages. The construction phase-related rules are divided into four groups: (1) before work, (2) with intervals, (3) during work, and (4) after work. To validate the proposed framework, this research developed prototypes for each group’s scenarios using deep learning algorithms, a storage database to record compliance with safety rules, and an Android application for edge computing, which is required in the “before work” and “after work” groups. The findings of this study could contribute to the development of a compact CV-based safety monitoring system to enhance the current safety management process in the construction industry. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
20.2 MB
- Über diese
Datenseite - Reference-ID
10737602 - Veröffentlicht am:
02.09.2023 - Geändert am:
14.09.2023