Construction Tasks Electronic Process Monitoring: Laboratory Circuit-Based Simulation Deployment
Autor(en): |
Diego Calvetti
Luís Sanhudo Pedro Mêda João Poças Martins Miguel Chichorro Gonçalves Hipólito Sousa |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 31 Juli 2022, n. 8, v. 12 |
Seite(n): | 1174 |
DOI: | 10.3390/buildings12081174 |
Abstrakt: |
The domain of data processing is essential to accelerate the delivery of information based on electronic performance monitoring (EPM). The classification of the activities conducted by craft workers can enhance the mechanisation and productivity of activities. However, research in this field is mainly based on simulations of binary activities (i.e., performing or not performing an action). To enhance EPM research in this field, a dynamic laboratory circuit-based simulation of ten common constructions activities was performed. A circuit feasibility case study of EPM using wearable devices was conducted, where two different data processing approaches were tested: machine learning and multivariate statistical analysis (MSA). Using the acceleration data of both wrists and the dominant leg, the machine-learning approach achieved an accuracy between 92 and 96%, while MSA achieved 47–76%. Additionally, the MSA approach achieved 32–76% accuracy by monitoring only the dominant wrist. Results highlighted that the processes conducted with manual tools (e.g., hammering and sawing) have prominent dominant-hand motion characteristics that are accurately detected with one wearable. However, free-hand performing (masonry), walking and not operating value (e.g., sitting) require more motion analysis data points, such as wrists and legs. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.31 MB
- Über diese
Datenseite - Reference-ID
10688615 - Veröffentlicht am:
13.08.2022 - Geändert am:
10.11.2022