Comprehensive Empirical Modeling of Shear Strength Prediction in Reinforced Concrete Deep Beams
Autor(en): |
Eyad K. Sayhood
Nisreen S. Mohammed Salam J. Hilo Salih S. Salih |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 9 April 2024, n. 4, v. 9 |
Seite(n): | 67 |
DOI: | 10.3390/infrastructures9040067 |
Abstrakt: |
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, this study considers various parameters such as concrete compressive strength (f′c), the shear span-to-effective depth ratio (av/d), and reinforcement ratios (ps, pv, and ph). Introducing a novel predictive empirical equation, this study conducts a rigorous evaluation using statistical metrics and a linear regression analysis (MAE, RMSE, and R2). The proposed model demonstrates a significant reduction in the coefficient of variation (CV) to 27.08%, compared to the existing codes’ limitations. Comparative analyses highlight the accuracy of the empirical equation, revealing an improved convergence of data points and minimal sensitivity to variations in key parameters. The results proved that the proposed empirical equation enhanced the accuracy to predict the shear strength capacity of the reinforced concrete deep beams in various scenarios, making it a valuable tool for structural engineers. This research contributes to advancing the understanding of shear strength capacity in reinforced concrete deep beams, offering a reliable empirical equation with implications for refining design methodologies and enhancing safety with the efficiency of structural systems. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.88 MB
- Über diese
Datenseite - Reference-ID
10776431 - Veröffentlicht am:
29.04.2024 - Geändert am:
05.06.2024