0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Composite Girders with Partial Restraints: A New Approach

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Engineering Journal, , n. 2, v. 30
Seite(n): 68-75
DOI: 10.62913/engj.v30i2.611
Abstrakt:

Most designs for buildings with steel frames are based on girders with simple connections. To eliminate the problems associated with traditional construction (such as deep and heavy girders and large deflections during construction) structural engineers have been searching for a new design system for a long time. The stub girder system is one example of such efforts. However, the stub girder system proved to be uneconomical for most common buildings. A new and different approach to composite steel/concrete designs was undertaken by the writer resulting in light building frames and cost savings. This new design system is called partial Restraint Girder System ("RGS") (Figure 1). (A composite section is obtained in buildings with metal deck and concrete floors by welding steel studs to the top flange.) With RGS two types of restraint are possible: the first makes use of moment connections to columns; the second includes concrete reinforcement. In buildings utilizing composite girders, deflections were controlled by either shoring, camber, or further increase in girder size. RGS has arisen as a viable and cost effective alternative. In traditional designs, the engineer determined the buildings moment diagram from a moment distribution or stress analysis. In the RGS method, the Structural Engineer can control the maximum and minimum values of moment on the moment diagram (the governing design values) from the outset to fit his design, by establishing the amount of restraint. Although composite girders with partial restraints improve the moment resistance of composite girders significantly, such design is commonly ignored and the codes of practice give no guidance as to procedures that might take advantage of the improved properties.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.62913/engj.v30i2.611.
  • Über diese
    Datenseite
  • Reference-ID
    10782909
  • Veröffentlicht am:
    17.05.2024
  • Geändert am:
    17.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine