Comparison of Old and New Stable Explicit Methods for Heat Conduction, Convection, and Radiation in an Insulated Wall with Thermal Bridging
Autor(en): |
Humam Kareem Jalghaf
Endre Kovács Betti Bolló |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 16 September 2022, n. 9, v. 12 |
Seite(n): | 1365 |
DOI: | 10.3390/buildings12091365 |
Abstrakt: |
Using efficient methods to calculate heat transfer in building components is an important issue. In the current work, 14 numerical methods are examined to solve the heat transfer problem inside building walls. Not only heat conduction but convection and radiation are considered as well, in addition to heat generation. Five of the used methods are recently invented explicit algorithms, which are unconditionally stable for conduction problems. First, the algorithms are verified in a 1D case by comparing the results of the methods to an analytical solution. Then they are tested on real-life cases in the case of surface area (made of brick) and cross-sectional area (two-layer brick and insulator) walls with and without thermal bridging. Equidistant and non-equidistant grids are used as well. The goal was to determine how the errors depend on the properties of the materials, the mesh type, and the time step size. The results show that the best algorithms are typically the leapfrog-hopscotch and the modified Dufort–Frankel and odd–even hopscotch algorithms since they are quite accurate for larger time step sizes, even for 100 s as well. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
11.33 MB
- Über diese
Datenseite - Reference-ID
10692565 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022