0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Comparison of active and passive back-support exoskeletons for construction work: range of motion, discomfort, usability, exertion and cognitive load assessments

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart and Sustainable Built Environment
DOI: 10.1108/sasbe-06-2023-0147
Abstrakt:

Purpose

Low back disorders are more predominant among construction trade workers than their counterparts in other industry sectors. Floor layers are among the top artisans that are severely affected by low back disorders. Exoskeletons are increasingly being perceived as ergonomic solutions. This study aims to compare the efficacy of passive and active back-support exoskeletons by measuring range of motion, perceived discomfort, usability, perceived rate of exertion and cognitive load during a simulated flooring task experiment.

Design/methodology/approach

In this study eight participants were engaged in a repetitive timber flooring task performed with passive and active back-support exoskeletons. Subjective and objective data were collected to assess the risks associated with using both exoskeletons. Descriptive statistics were used for analysis. Scheirer-Ray-Hare test and Wilcoxon signed-rank test were adopted to compare the exoskeleton conditions.

Findings

The results show no significant differences in the range of motion (except for a lifting cycle), perceived level of discomfort and perceived level of exertion between the two exoskeletons. Significant difference in overall cognitive load was observed. The usability results show that the active back-support exoskeleton made task execution easier with less restriction on movement.

Research limitations/implications

The flooring task is simulated in a laboratory environment with only eight male participants.

Originality/value

This study contributes to the scarce body of knowledge on the usage comparison of passive and active exoskeletons for construction work.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1108/sasbe-06-2023-0147.
  • Über diese
    Datenseite
  • Reference-ID
    10779599
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine