0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Comparative Analysis of Slope Failure Prediction Using a Statistical and Machine Learning Approach on Displacement Data: Introducing a Tailored Performance Metric

Autor(en):
ORCID

ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 11, v. 13
Seite(n): 2691
DOI: 10.3390/buildings13112691
Abstrakt:

Slope failures pose significant threats to human safety and vital infrastructure. The urgent need for the accurate prediction of these geotechnical events is driven by two main goals: advancing our understanding of the underlying geophysical mechanisms and establishing efficient evacuation protocols. Although traditional physics-based models offer in-depth insights, their reliance on numerous assumptions and parameters limits their practical usability. In our study, we constructed an experimental artificial slope and monitored it until failure, generating an in-depth displacement dataset. Leveraging this dataset, we developed and compared prediction models rooted in both statistical and machine learning paradigms. Furthermore, to bridge the gap between generic evaluation metrics and the specific needs of slope failure prediction, we introduced a bespoke performance. Our results indicate that while the statistical approach did not effectively provide early warnings, the machine learning models, when assessed with our bespoke performance metric, showed significant promise as reliable early warning systems. These findings hold potential to fortify disaster prevention measures and prioritize human safety.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10744415
  • Veröffentlicht am:
    28.10.2023
  • Geändert am:
    07.02.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine