0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Combining Deep Fully Convolutional Network and Graph Convolutional Neural Network for the Extraction of Buildings from Aerial Images

Autor(en): ORCID
ORCID
ORCID




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 12, v. 12
Seite(n): 2233
DOI: 10.3390/buildings12122233
Abstrakt:

Deep learning technology, such as fully convolutional networks (FCNs), have shown competitive performance in the automatic extraction of buildings from high-resolution aerial images (HRAIs). However, there are problems of over-segmentation and internal cavity in traditional FCNs used for building extraction. To address these issues, this paper proposes a new building graph convolutional network (BGC-Net), which optimizes the segmentation results by introducing the graph convolutional network (GCN). The core of BGC-Net includes two major modules. One is an atrous attention pyramid (AAP) module, obtained by fusing the attention mechanism and atrous convolution, which improves the performance of the model in extracting multi-scale buildings through multi-scale feature fusion; the other is a dual graph convolutional (DGN) module, the build of which is based on GCN, which improves the segmentation accuracy of object edges by adding long-range contextual information. The performance of BGC-Net is tested on two high spatial resolution datasets (Wuhan University building dataset and a Chinese typical city building dataset) and compared with several state-of-the-art networks. Experimental results demonstrate that the proposed method outperforms several state-of-the-art approaches (FCN8s, DANet, SegNet, U-Net, ARC-Net, BAR-Net) in both visual interpretation and quantitative evaluations. The BGC-Net proposed in this paper has better results when extracting the completeness of buildings, including boundary segmentation accuracy, and shows great potential in high-precision remote sensing mapping applications.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10712675
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine