0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Clustering Algorithm for Tunnel Boring Machine Data Based on Ridge Regression and Fuzzy C-Means

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2555
Seite(n): 012011
DOI: 10.1088/1742-6596/2555/1/012011
Abstrakt:

A fuzzy clustering data partitioning method based on ridge regression is proposed to address the high correlation between the data attributes of the tunnel boring machine. The method utilizes the fuzzy partition matrix as the weight for ridge regression analysis and then employs the resulting regression equation as the clustering model to iteratively approach the target minimum value. This process enables data clustering based on the relevant characteristics of the data attributes. Experimental results using functional data sets demonstrate that this method achieves higher accuracy in clustering functional correlation data compared to traditional methods. Additionally, the proposed algorithm is evaluated using measured data from a bid section of a city subway. Results indicate that the algorithm effectively addresses the problem of data classification and key performance index prediction, with a misclassification rate and prediction error of 23.8% and 2.11%, respectively. These findings meet the engineering requirements and provide support for the subsequent data analysis of the tunnel boring machine.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2555/1/012011.
  • Über diese
    Datenseite
  • Reference-ID
    10777561
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine