0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Classification-based event detection in ecological monitoring networks

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Electronic Journal of Structural Engineering, , n. 1
Seite(n): 36-44
DOI: 10.56748/ejse.13001
Abstrakt:

Power-budgeting is a fundamental challenge in sensor networks today and the energy requirement of different sensing modalities is unevenly distributed. As a result, it is advisable to activate power-hungry sensors only during informative periods. Using low-power sensors, one can predict these informative periods due to strong correlations exhibited by environmental modalities. In this article, we consider an application of detecting “events” using classification based methods to increase the lifetime of the network. Specifically, we explore the problem of using low-power sensors to predict precipitation, which is one of the primary drivers of ecological activity. Such predictions can allow us to schedule the activation of expensive sensors (such as CO2) when they are most informative. In order to achieve this trade-off between power and collecting informative data, we focus our efforts on predicting/ classifying precipitation based on features extracted from inexpensive ambient temperature and barometric pressure modalities. Experimental results obtained from weather data collected over multiple years demonstrates that we can achieve accuracy towards 80% using these low-cost modalities and simple linear classifiers.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.56748/ejse.13001.
  • Über diese
    Datenseite
  • Reference-ID
    10778843
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine