Buildings’ Heating and Cooling Load Prediction for Hot Arid Climates: A Novel Intelligent Data-Driven Approach
Autor(en): |
Kashif Irshad
Md. Hasan Zahir Mahaboob Sharief Shaik Amjad Ali |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 20 September 2022, n. 10, v. 12 |
Seite(n): | 1677 |
DOI: | 10.3390/buildings12101677 |
Abstrakt: |
An important aspect in improving the energy efficiency of buildings is the effective use of building heating and cooling load prediction models. A lot of studies have been undertaken in recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as well as developing a high-accuracy forecasting model are the most difficult and important aspects of prediction. The goal of this research is to create an intelligent data-driven load forecast model for residential construction heating and cooling load intensities. In this paper, the shuffled shepherd red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network (SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be employed, with building system parameters as input factors and heating and cooling loads as output results for each system. The simulation of this research is executed using MATLAB software. Finally, the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is compared to that of other conventional methods. It shows that the proposed method has achieved the finest performance of load prediction compared with the conventional methods. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.96 MB
- Über diese
Datenseite - Reference-ID
10700183 - Veröffentlicht am:
11.12.2022 - Geändert am:
15.02.2023