0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Building Materials Classification Model Based on Text Data Enhancement and Semantic Feature Extraction

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 14
Seite(n): 1859
DOI: 10.3390/buildings14061859
Abstrakt:

In order to accurately extract and match carbon emission factors from the Chinese textual building materials list and construct a precise carbon emission factor database, it is crucial to accurately classify the textual building materials. In this study, a novel classification model based on text data enhancement and semantic feature extraction is proposed and applied for building materials classification. Firstly, the explanatory information on the building materials is collected and normalized to construct the original dataset. Then, the Latent Dirichlet Allocation and statistical-language-model-based hybrid ensemble data enhancement methods are explained in detail, and the semantic features closely related to the carbon emission factor are extracted by constructed composite convolutional networks and the transformed word vectors. Finally, the ensemble classification model is designed, constructed, and applied to match the carbon emission factor from the textual building materials. The experimental results show that the proposed model improves the F1Macro score by 4–12% compared to traditional machine learning and deep learning models.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10787672
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine