^ Building Energy Consumption Raw Data Forecasting Using Data Cleaning and Deep Recurrent Neural Networks | Structurae
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke


Building Energy Consumption Raw Data Forecasting Using Data Cleaning and Deep Recurrent Neural Networks


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 9, v. 9
Seite(n): 204
DOI: 10.3390/buildings9090204

With the rising focus on building energy big data analysis, there lacks a framework for raw data preprocessing to answer the question of how to handle the missing data in the raw data set. This study presents a methodology and framework for building energy consumption raw data forecasting. A case building is used to forecast the energy consumption by using deep recurrent neural networks. Four different methodologies to impute missing data in the raw data set are compared and implemented. The question of sensitivity of gap size and available data percentage on the imputation accuracy was tested. The cleaned data were then used for building energy forecasting. While the existing studies explored only the use of small recurrent networks of 2 layers and less, the question of whether a deep network of more than 2 layers would be performing better for building energy consumption forecasting should be explored. In addition, the problem of overfitting has been cited as a significant problem in using deep networks. In this study, the deep recurrent neural network is then used to explore the use of deeper networks and their regularization in the context of an energy load forecasting task. The results show a mean absolute error of 2.1 can be achieved through the 2*32 gated neural network model. In applying regularization methods to overcome model overfitting, the study found that weights regularization did indeed delay the onset of overfitting.

Copyright: © 2019 by the authors; licensee MDPI, Basel, Switzerland.

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
  • Reference-ID
  • Veröffentlicht am:
  • Geändert am: