0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Building early drought forecasting model in the Dak Dak province using machine learning algorithms

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: IOP Conference Series: Earth and Environmental Science, , n. 1, v. 1170
Seite(n): 012002
DOI: 10.1088/1755-1315/1170/1/012002
Abstrakt:

Drought is a natural disaster that has severe economic and environmental consequences. In the Dak Lak province, drought has frequently occurred in recent years, causing severe water scarcity in the dry season. Therefore, drought forecasting information will be essential to take timely response measures for water resource management and agricultural production. This study used machine learning methods for drought forecasting in the Dak Lak province. The three machine learning models used in this study include Artificial Neural Network (ANN), Support Vector Regression (SVR), and Random Forest (RF), combined with the use of the Standardized Precipitation - Evapotranspiration Index (SPEI) to predict meteorological droughts. Results showed that the ANN models give high accuracy in the drought prediction for the study area.

Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10780381
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine