Bridge Damage Severity Quantification Using Multipoint Acceleration Measurement and Artificial Neural Networks
Autor(en): |
Pang-Jo Chun
Hiroaki Yamashita Seiji Furukawa |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Shock and Vibration, 2015, v. 2015 |
Seite(n): | 1-11 |
DOI: | 10.1155/2015/789384 |
Abstrakt: |
The deterioration of bridges as a result of ageing is a serious problem in many countries. To prevent the failure of these deficient bridges, early damage detection which helps us to evaluate the safety of bridges is important. Therefore, the present research proposed a method to quantify damage severity by use of multipoint acceleration measurement and artificial neural networks. In addition to developing the method, we developed a cheap and easy-to-make measurement device which can be made by bridge owners at low cost and without the need for advance technical skills since the method is mainly intended to apply to small to midsized bridges. In addition, the paper gives an example application of the method to a weathering steel bridge in Japan. It can be shown from the analysis results that the method is accurate in its damage identification and mechanical behavior prediction ability. |
Copyright: | © 2015 Pang-jo Chun, Hiroaki Yamashita, Seiji Furukawa |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.14 MB
- Über diese
Datenseite - Reference-ID
10676355 - Veröffentlicht am:
28.05.2022 - Geändert am:
01.06.2022