Bridge Damage Identification Based on Encoded Images and Convolutional Neural Network
Autor(en): |
Xiaoguang Wang
Wanhua Li Ming Ma Fan Yang Shuai Song |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 Oktober 2024, n. 10, v. 14 |
Seite(n): | 3104 |
DOI: | 10.3390/buildings14103104 |
Abstrakt: |
Bridges are prone to damage from various factors, impacting the overall safety of transportation networks. Accurate damage identification is crucial for maintaining bridge integrity. This study proposes a novel method using encoded images and a convolutional neural network (CNN) for bridge damage identification. By converting raw acceleration data into encoded images, the data can be represented from multiple perspectives, enhancing the extraction of essential features related to bridge damage states. The method was validated using data simulated from a continuous rigid-frame bridge model. The results demonstrate that using encoded images as inputs yields a higher recall rate, precision, and F1-score compared to using acceleration responses as inputs, achieving a comprehensive accuracy of 92%. This study concludes that the combination of encoded images and CNN provides a robust approach for accurate and efficient bridge damage identification. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
27.96 MB
- Über diese
Datenseite - Reference-ID
10804924 - Veröffentlicht am:
10.11.2024 - Geändert am:
10.11.2024