BIM Style Restoration Based on Image Retrieval and Object Location Using Convolutional Neural Network
Autor(en): |
Yalong Yang
Yuanhang Wang Xiaoping Zhou Liangliang Su Qizhi Hu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 1 Dezember 2022, n. 12, v. 12 |
Seite(n): | 2047 |
DOI: | 10.3390/buildings12122047 |
Abstrakt: |
BIM is one of the main technical ways to realize building informatization, and the model’s texture is essential to its style design during BIM construction. However, the texture maps provided by mainstream BIM software are not realistic enough and monotonous to meet the actual needs of users for the model style. Therefore, an interior furniture BIM style restoration method was proposed based on image retrieval and object location using convolutional neural network. First, two types of furniture images, namely grayscale contour images from BIM software and real images from the Internet, were collected to train the following network model. Second, a multi-feature weighted fusion neural network model based on an attention mechanism (AM-rVGG) was proposed, which focused on the structural information of furniture images to retrieve the most similar real image, and then some furniture image patches from the retrieved one were generated with object location and random cropping techniques as the candidate texture maps of the furniture BIM. Finally, the candidate ones were fed back into the BIM software to realize the restoration of the furniture BIM style. The experimental results showed that the average retrieval accuracy of the proposed network model was 83.1%, and the obtained texture maps could effectively restore the real style of the furniture BIM. This work provides a new idea for restoring the realism in other BIM. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.44 MB
- Über diese
Datenseite - Reference-ID
10700269 - Veröffentlicht am:
10.12.2022 - Geändert am:
15.02.2023