0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Behavior Expectation-Based Anomaly Detection in Bridge Deflection Using AOA-BiLSTM-TPA: Considering Temperature and Traffic-Induced Temporal Patterns

Autor(en): ORCID
ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , v. 2024
Seite(n): 1-19
DOI: 10.1155/2024/2337057
Abstrakt:

In the realm of structural health monitoring (SHM), understanding the expected behavior of a structure is vital for the timely identification of anomalous activities. Existing methods often model only the physical quantities of monitoring data, neglecting the corresponding temporal information. To address this, this paper presents an innovative deep learning framework that synergistically combines a BiLSTM model, fortified by a temporal pattern attention (TPA) mechanism, with time-encoded temperature and traffic-induced deflection-temporal patterns. The arithmetic optimization algorithm (AOA) is employed for optimal hyperparameter tuning, and incremental learning was implemented to enable real-time updates of the model. Based on the proposed framework, an anomaly detection method was subsequently developed. This method is bidirectional: it uses quantile loss to provide expected ranges for structural behavior, identifying isolated anomalies, while the windowed normalized mutual information (WNMI) based on multivariate kernel density estimation (MKDE) helps detect trend variability caused by decreases in structural stiffness. This framework and the anomaly detection method were validated using data from an operational cable-stayed bridge. The results demonstrate that the method effectively predicts structural behavior and detects anomalies, highlighting the critical role of temporal information in SHM.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/2337057.
  • Über diese
    Datenseite
  • Reference-ID
    10784496
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine