Bearing Damage Detection of a Bridge under the Uncertain Conditions Based on the Bayesian Framework and Matrix Perturbation Method
Autor(en): |
Baojun Li
Yongzhi Lei Dongming Zhou Zhiheng Deng Yuhou Yang Minshui Huang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Shock and Vibration, Januar 2021, v. 2021 |
Seite(n): | 1-17 |
DOI: | 10.1155/2021/5576362 |
Abstrakt: |
The bearing of a bridge, as a critical component, is important in the force transformation of the superstructure; however, due to the service condition and repeated impact load, the bearing is prone to be damaged but difficult to detect the damage; the present research has few studies that focused on the damage detection of the structural bearing. Meanwhile, practical engineering is always surrounded by variational environmental conditions, and sometimes, the element and bearing damage both exist in the structure. Thus, these uncertain conditions all cause inaccurate damage identification results using the vibration-based damage detection method. In order to detect the damage of the structural bearing and improve the precision, firstly, the structural dynamic characteristic equation considering uncertain conditions has been deduced; then, a damage detection framework constructed by the Bayesian theory and perturbation method has been developed in this article; a numerical example of an 8-span concrete continuous beam and a practical example of I-40 steel-concrete composite bridge are utilized to validate the feasibility of the proposed method, and single type and two types of damage cases are studied. The outcomes demonstrate that the damage of structural elements and bearings can be detected with high accuracy. The proposed method is of great applicability and good potential. |
Copyright: | © 2021 Baojun Li, Yongzhi Lei, Dongming Zhou, Zhiheng Deng, Yuhou Yang, Minshui Huang |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.75 MB
- Über diese
Datenseite - Reference-ID
10676188 - Veröffentlicht am:
28.05.2022 - Geändert am:
01.06.2022