0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Bayesian prediction of bridge extreme stresses based on DLTM and monitoring coupled data

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 2, v. 19
Seite(n): 454-462
DOI: 10.1177/1475921719853171
Abstrakt:

For predicting dynamic coupled extreme stresses of bridges with monitoring coupled data, this article considers monitoring extreme stress data as a time series, and takes into account its coupling generated by the fusion of non-stationarity and randomness. First, the local polynomial theory is introduced, and the local polynomial order of monitoring coupled extreme stress data is estimated with time-series analysis method. Second, based on time-series analysis results, dynamic linear trend models (DLTM) and the corresponding Bayesian probability recursive processes are given to predict dynamic coupled extreme stresses. Finally, through the illustration of monitoring coupled extreme stress data from an actual bridge, the proposed method, which is compared with the traditional Bayesian dynamic linear models, is proved to be more effective for predicting dynamic coupled extreme stresses of bridges.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921719853171.
  • Über diese
    Datenseite
  • Reference-ID
    10562304
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine