0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Bayesian Calibration for Office-Building Heating and Cooling Energy Prediction Model

Autor(en):

ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 7, v. 12
Seite(n): 1052
DOI: 10.3390/buildings12071052
Abstrakt:

Conventional building energy models (BEM) for heating and cooling energy-consumption prediction without calibration are not accurate, and the commonly used manual calibration method requires the high expertise of modelers. Bayesian calibration (BC) is a novel method with great potential in BEM, and there are many successful applications for unknown-parameters calibrating and retrofitting analysis. However, there is still a lack of study on prediction model calibration. There are two main challenges in developing a calibrated prediction model: (1) poor generalization ability; (2) lack of data availability. To tackle these challenges and create an energy prediction model for office buildings in Guangdong, China, this paper characterizes and validates the BC method to calibrate a quasi-dynamic BEM with a comprehensive database including geometry information for various office buildings. Then, a case study analyzes the effectiveness and performance of the calibrated prediction model. The results show that BC effectively and accurately calibrates quasi-dynamic BEM for prediction purposes. The calibrated model accuracy (monthly CV(RMSE) of 0.59% and hourly CV(RMSE) of 19.35%) meets the requirement of ASHRAE Guideline 14. With the calibrated prediction model, this paper provides a new way to improve the data quality and integrity of existing building energy databases and will further benefit usability.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10688645
  • Veröffentlicht am:
    13.08.2022
  • Geändert am:
    10.11.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine