Automation in Interior Space Planning: Utilizing Conditional Generative Adversarial Network Models to Create Furniture Layouts
Autor(en): |
Hanan Tanasra
Tamar Rott Shaham Tomer Michaeli Guy Austern Shany Barath |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 28 Juni 2023, n. 7, v. 13 |
Seite(n): | 1793 |
DOI: | 10.3390/buildings13071793 |
Abstrakt: |
In interior space planning, the furnishing stage usually entails manual iterative processes, including meeting design objectives, incorporating professional input, and optimizing design performance. Machine learning has the potential to automate and improve interior design processes while maintaining creativity and quality. The aim of this study was to develop a furnishing method that leverages machine learning as a means for enhancing design processes. A secondary aim was to develop a set of evaluation metrics for assessing the quality of the results generated from such methods, enabling comparisons between the performance of different models. To achieve these aims, floor plans were tagged and assembled into a comprehensive dataset that was then employed for training and evaluating three conditional generative adversarial network models (pix2pix, BicycleGAN, and SPADE) to generate furniture layouts within given room boundaries. Post-processing methods for improving the generated results were also developed. Finally, evaluation criteria that combine measures of architectural design with standard computer vision parameters were devised. Visual architectural analyses of the results confirm that the generated rooms adhere to accepted architectural standards. The numerical results indicate that BicycleGAN outperformed the two other models. Moreover, the overall results demonstrate a machine-learning workflow that can be used to augment existing interior design processes. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
5.85 MB
- Über diese
Datenseite - Reference-ID
10737102 - Veröffentlicht am:
03.09.2023 - Geändert am:
14.09.2023