0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An Automatic Recognition Method of Microseismic Signals Based on S Transformation and Improved Gaussian Mixture Model

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2020
Seite(n): 1-24
DOI: 10.1155/2020/8825990
Abstrakt:

The microseismic signals in the coal minefield are very complex because of its special environment with a large number of blast vibration signals, and how to effectively identify the microseismic signals is still a big problem. S transform (ST) and Manifold Learning (ML) methods are introduced to extract the characteristics of the microseismic signals, and Gaussian Mixture Model based on the improved Bee Colony optimization algorithm (IBC-GMM) is established to identify the microseismic signals accurately. Firstly, the time-frequency characteristics of microseismic signals in coal mine are extracted by ST analysis. It is found that there are obvious time-frequency differences between rock-fracturing signals and blast vibration signals. Blast vibration signals have short duration, high frequency, and complex frequency spectrum, and their dominant frequencies are mainly over 100 Hz. However, rock-fracturing signals are relatively slow, with low frequency and stable spectrum change, and their dominant frequencies are generally below 100 Hz. Then, combining with the microseismic data of Xiashinjie coal mine in Tongchuan, China, the feature dimension reduction is carried out by Manifold Learning (ML) method, and the processed feature vectors are automatically recognized by IBC-GMM. Field test results show that the method summarizes the characteristics of the microseismic wave which are difficult to emerge as the learning vector, and the features reflect the key features of microseismic signals well. The identification accuracy is as high as 94%, and its recognition effect is superior to other recognition models (such as traditional Gaussian Mixture Model based on Expectation-Maximum (EM-GMM), Backpropagation (BP) neural network, Random Forests (RF), Bayes (Bayes) methods, and Logistic Regression (LR) method). Therefore, IBC-GMM could be used to mine engineering microseismic monitoring waveform recognition to provide the reference.

Copyright: © 2020 Kaikai Wang et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10429566
  • Veröffentlicht am:
    14.08.2020
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine