0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Automatic Multi‐label Classification of Bridge Components and Defects Based on Inspection Photographs

Autor(en): (CEA LIST Palaiseau France)
(Socotec Monitoring Palaiseau France)
(Socotec Monitoring Palaiseau France)
(Socotec Monitoring Palaiseau France)
(CEA LIST Palaiseau France)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: ce/papers, , n. 5, v. 6
Seite(n): 1080-1086
DOI: 10.1002/cepa.2072
Abstrakt:

When performing visual inspections of bridges, experts collect photographs of defects to assess the overall condition of the structure and schedule maintenance plans. Such inspections are labor‐intensive, and computer vision‐based systems are being investigated as automated tools to assist the experts in their inspections. An important aspect however remains to ensure the representativeness of the data accounting for the sheer size, complexity and variety of the bridge components and defects being reported. Here, we perform a multi‐label classification on a dataset (SOFIA dataset) that consists of 139,455 images of types of bridge components and defects among which 53,805 are labeled (13 classes for each type). The dataset containing class imbalance and noisy labeling is processed using visual embedding computed from unsupervised deep learning methods. A combination of class‐balancing techniques is investigated on the state‐of‐the‐art Vision Transformer model. Interclass relations, which determine whether a class of defect should be part of a class of bridge component, are implemented with an additional filtering step. The whole method is also deployed on the CODEBRIM benchmark dataset resulting in an improved accuracy score.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/cepa.2072.
  • Über diese
    Datenseite
  • Reference-ID
    10767226
  • Veröffentlicht am:
    17.04.2024
  • Geändert am:
    17.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine