0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An automatic image processing based on Hough transform algorithm for pavement crack detection and classification

Autor(en): ORCID
ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart and Sustainable Built Environment
DOI: 10.1108/sasbe-01-2023-0004
Abstrakt:

Purpose

Incipient detection of pavement deterioration (such as crack identification) is critical to optimizing road maintenance because it enables preventative steps to be implemented to mitigate damage and possible failure. Traditional visual inspection has been largely superseded by semi-automatic/automatic procedures given significant advancements in image processing. Therefore, there is a need to develop automated tools to detect and classify cracks.

Design/methodology/approach

The literature review is employed to evaluate existing attempts to use Hough transform algorithm and highlight issues that should be improved. Then, developing a simple low-cost crack detection method based on the Hough transform algorithm for pavement crack detection and classification.

Findings

Analysis results reveal that model accuracy reaches 92.14% for vertical cracks, 93.03% for diagonal cracks and 95.61% for horizontal cracks. The time lapse for detecting the crack type for one image is circa 0.98 s for vertical cracks, 0.79 s for horizontal cracks and 0.83 s for diagonal cracks. Ensuing discourse serves to illustrate the inherent potential of a simple low-cost image processing method in automated pavement crack detection. Moreover, this method provides direct guidance for long-term pavement optimal maintenance decisions.

Research limitations/implications

The outcome of this research can help highway agencies to detect and classify cracks accurately for a very long highway without a need for manual inspection, which can significantly minimize cost.

Originality/value

Hough transform algorithm was tested in terms of detect and classify a large dataset of highway images, and the accuracy reaches 92.14%, which can be considered as a very accurate percentage regarding automated cracks and distresses classification.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1108/sasbe-01-2023-0004.
  • Über diese
    Datenseite
  • Reference-ID
    10779656
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine