Automatic Extraction of Rock Discontinuities from the Point Cloud Using Dynamic DBSCAN Algorithm
Autor(en): |
Ming Tang
Song Yang Guohua Huang Xiongyao Xie Jiafu Guo Junli Zhai |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2022, v. 2022 |
Seite(n): | 1-8 |
DOI: | 10.1155/2022/7754179 |
Abstrakt: |
Detection and mapping of rock discontinuities are important during excavation. The terrestrial laser scanning (TSL) technology is widely used to acquire accurate quantitative. However, there is rarely study about the influence of discontinuities parameters on the detection. Through the 3D printing technology, we have built discontinuity models with different roughness and connectors with different angles. Therefore, we can control the variables in the scanning. Several open-source packages were applied to derive the information from the point cloud acquired by TSL. The result shows that the recognition effect decreases with the angle between discontinuities. Moreover, the presence of roughness of discontinuity makes it prone to lead to lousy classification in the detection process. The proposed method has successfully extracted discontinuity dip, dip direction, and roughness automatically from the point cloud. The application on the two datasets showed great adaptability and accuracy. Consequently, the method could meet realistic engineering needs. |
Copyright: | © Ming Tang et al. et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.96 MB
- Über diese
Datenseite - Reference-ID
10663830 - Veröffentlicht am:
09.05.2022 - Geändert am:
01.06.2022