0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Automatic Bridge Detection of SAR Images Based on Interpretable Deep Learning Algorithm

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2562
Seite(n): 012013
DOI: 10.1088/1742-6596/2562/1/012013
Abstrakt:

As a typical feature target in SAR images, the accurate detection and localization of bridge targets are of important research value for the management of transportation facilities and battlefield reconnaissance. Since most of the current bridge target detection algorithms use horizontal frames, they cannot achieve accurate localization of bridges. There is a large amount of background information in the data set annotation, which is not conducive to the training of the network. In this paper, an in-depth analysis of the interpretable deep learning algorithm is presented to show that the use of rotating detection frames is more beneficial to the automatic detection of targets with large aspect ratios such as bridges. The algorithm framework first performs feature extraction of bridge targets through the Yolov5 network, and then passes the feature maps containing target information into the proposed regression prediction visualization module to obtain detection result maps and heat maps. In the experiments, the SAR images of the Foshan area are used to verify the results, and the advantages of the rotating detection frame in terms of localization and inspection performance are analysed by comparing the IoU and the heat map.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2562/1/012013.
  • Über diese
    Datenseite
  • Reference-ID
    10777469
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine