Automated Generation of Urban Spatial Structures Based on Stable Diffusion and CoAtNet Models
Autor(en): |
Dian Yu
Bo Wan Qiang Sheng |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 18 Dezember 2024, n. 12, v. 14 |
Seite(n): | 3720 |
DOI: | 10.3390/buildings14123720 |
Abstrakt: |
The urban road spatial structure is a crucial and complex component of urban design. Generative design models, such as the Stable Diffusion model, can rapidly and massively produce designs. However, the opacity of their internal architecture and the uncertainty of their outcomes mean that the results generated do not meet specific disciplinary assessment criteria, thus limiting their widespread application in planar design and planning. Additionally, traditional software processes targeting specific indicators are time-consuming and do not allow for rapid evaluation. To address these challenges, we utilized several areas of the road spatial structures in six cities and their corresponding four space-syntax parameters as training samples. We simultaneously trained two models: one is a LoRA Model based on the Stable Diffusion architecture used for generating road networks similar to those of various city road spatial structures; the other is a CoAtNet Model (Convolution + Transformer) used as an evaluation model to predict the space-syntax parameters of road structures and calculate the Mean Absolute Percentage Error (MAPE) relative to real urban samples. Subsequently, by linking these two models end-to-end, we were able to filter out generated samples with the smallest MAPE, thereby enhancing the structural similarity between the generated results and the actual urban road spatial structures. This process of rapid generation and swift evaluation of network configurations marks a critical advancement towards better performance and more customized design solutions. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.44 MB
- Über diese
Datenseite - Reference-ID
10810567 - Veröffentlicht am:
17.01.2025 - Geändert am:
17.01.2025